Math 332 « Midterm Exam * March 9, 2016 ¢ Victor Matveev

1) (24pts) Find all distinct values of z, in Cartesian or polar form. For parts (a) and (b), show
the locations of these points in the complex plane
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2) (32pts) Calculate each integral over the given circle, or explain clearly why the integral
equals zero; make sure to indicate the locations of singularities of each integrand:

(@) ¢ dz - =0 by F.C.T.: antiderivative is continuous along the entire contour F(z)= 1 ,
1zj=5 (eZ —1) (eZ —1)
(Singularitis are at log(l) =i2zn, none of which are on the contour)
(b) gz =0 by C.G.T. since the nearest singularity (cosz = —1) is at z = £, outside the circle |z|=1
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d) (ﬁ \/, #(0 < Antiderivative F(z) = 2z hasa discontinuity (sign change) on the contour, at z = —4:
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thus, the integral equals the jump: (ﬁ
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Alternatively, you can compute this directly by parametrizing the circle: z =4€", 8 e[-7x, 7]

3) (14pts) Differentiate this function: f(z)=(cosz) ™’
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4) (14pts) Is the functionz f (z) =Q differentiable anywhere? Is it analytic anywhere? Is
z

this function continuous in the entire plane? Use one of the following forms of Cauchy-
Riemann equations in polar coordinates to analyze analyticity / differentiability:
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A function explicitly dependent on Z can’t be analytic, which is easy to see in polar coordinates:
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Thus, the function is neither differentiable nor analytic anywhere

However, it can be made continuous in the entire plane by defining f ( =0, which removes
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5) (16pts) Sketch the regionm/2<Rez <1, 1< Imz < 2, and sketch its image under the
transformation w = exp(iZ ). It may help to decompose this map into three elementary
steps.
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Step 3:
w=exp(i7)
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Step 1: reflect around the real axis:

Step 2: rotate counterclockwise by n/2: Re(w=i7)e[l,2]; Im(w
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Step 3: exponentiate: expw = exp (U +iv) = exp(u)exp(iv)



6) (16pts) Calculate the following integrals, using an
appropriate method in each case, or explain why the
integral is zero:

qSIm(z) dz , where I" is shown in the top figure

b) J. 1 , Where y is shown in the bottom figure
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Note that the absolute value equals the area enclosed by the contour, in agreement with Green's Theorem
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